3.225 \(\int \frac{1}{x^4 \sqrt{a+b x^3+c x^6}} \, dx\)

Optimal. Leaf size=72 \[ \frac{b \tanh ^{-1}\left (\frac{2 a+b x^3}{2 \sqrt{a} \sqrt{a+b x^3+c x^6}}\right )}{6 a^{3/2}}-\frac{\sqrt{a+b x^3+c x^6}}{3 a x^3} \]

[Out]

-Sqrt[a + b*x^3 + c*x^6]/(3*a*x^3) + (b*ArcTanh[(2*a + b*x^3)/(2*Sqrt[a]*Sqrt[a + b*x^3 + c*x^6])])/(6*a^(3/2)
)

________________________________________________________________________________________

Rubi [A]  time = 0.0600472, antiderivative size = 72, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {1357, 730, 724, 206} \[ \frac{b \tanh ^{-1}\left (\frac{2 a+b x^3}{2 \sqrt{a} \sqrt{a+b x^3+c x^6}}\right )}{6 a^{3/2}}-\frac{\sqrt{a+b x^3+c x^6}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*Sqrt[a + b*x^3 + c*x^6]),x]

[Out]

-Sqrt[a + b*x^3 + c*x^6]/(3*a*x^3) + (b*ArcTanh[(2*a + b*x^3)/(2*Sqrt[a]*Sqrt[a + b*x^3 + c*x^6])])/(6*a^(3/2)
)

Rule 1357

Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplif
y[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[
b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 730

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c,
 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[2*c*d - b*e, 0] && EqQ[m + 2*p + 3, 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^4 \sqrt{a+b x^3+c x^6}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{x^2 \sqrt{a+b x+c x^2}} \, dx,x,x^3\right )\\ &=-\frac{\sqrt{a+b x^3+c x^6}}{3 a x^3}-\frac{b \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+b x+c x^2}} \, dx,x,x^3\right )}{6 a}\\ &=-\frac{\sqrt{a+b x^3+c x^6}}{3 a x^3}+\frac{b \operatorname{Subst}\left (\int \frac{1}{4 a-x^2} \, dx,x,\frac{2 a+b x^3}{\sqrt{a+b x^3+c x^6}}\right )}{3 a}\\ &=-\frac{\sqrt{a+b x^3+c x^6}}{3 a x^3}+\frac{b \tanh ^{-1}\left (\frac{2 a+b x^3}{2 \sqrt{a} \sqrt{a+b x^3+c x^6}}\right )}{6 a^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.0237053, size = 72, normalized size = 1. \[ \frac{b \tanh ^{-1}\left (\frac{2 a+b x^3}{2 \sqrt{a} \sqrt{a+b x^3+c x^6}}\right )}{6 a^{3/2}}-\frac{\sqrt{a+b x^3+c x^6}}{3 a x^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*Sqrt[a + b*x^3 + c*x^6]),x]

[Out]

-Sqrt[a + b*x^3 + c*x^6]/(3*a*x^3) + (b*ArcTanh[(2*a + b*x^3)/(2*Sqrt[a]*Sqrt[a + b*x^3 + c*x^6])])/(6*a^(3/2)
)

________________________________________________________________________________________

Maple [F]  time = 0.022, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{4}}{\frac{1}{\sqrt{c{x}^{6}+b{x}^{3}+a}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(c*x^6+b*x^3+a)^(1/2),x)

[Out]

int(1/x^4/(c*x^6+b*x^3+a)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^6+b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.63848, size = 424, normalized size = 5.89 \begin{align*} \left [\frac{\sqrt{a} b x^{3} \log \left (-\frac{{\left (b^{2} + 4 \, a c\right )} x^{6} + 8 \, a b x^{3} + 4 \, \sqrt{c x^{6} + b x^{3} + a}{\left (b x^{3} + 2 \, a\right )} \sqrt{a} + 8 \, a^{2}}{x^{6}}\right ) - 4 \, \sqrt{c x^{6} + b x^{3} + a} a}{12 \, a^{2} x^{3}}, -\frac{\sqrt{-a} b x^{3} \arctan \left (\frac{\sqrt{c x^{6} + b x^{3} + a}{\left (b x^{3} + 2 \, a\right )} \sqrt{-a}}{2 \,{\left (a c x^{6} + a b x^{3} + a^{2}\right )}}\right ) + 2 \, \sqrt{c x^{6} + b x^{3} + a} a}{6 \, a^{2} x^{3}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^6+b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

[1/12*(sqrt(a)*b*x^3*log(-((b^2 + 4*a*c)*x^6 + 8*a*b*x^3 + 4*sqrt(c*x^6 + b*x^3 + a)*(b*x^3 + 2*a)*sqrt(a) + 8
*a^2)/x^6) - 4*sqrt(c*x^6 + b*x^3 + a)*a)/(a^2*x^3), -1/6*(sqrt(-a)*b*x^3*arctan(1/2*sqrt(c*x^6 + b*x^3 + a)*(
b*x^3 + 2*a)*sqrt(-a)/(a*c*x^6 + a*b*x^3 + a^2)) + 2*sqrt(c*x^6 + b*x^3 + a)*a)/(a^2*x^3)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{4} \sqrt{a + b x^{3} + c x^{6}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(c*x**6+b*x**3+a)**(1/2),x)

[Out]

Integral(1/(x**4*sqrt(a + b*x**3 + c*x**6)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{c x^{6} + b x^{3} + a} x^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(c*x^6+b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(c*x^6 + b*x^3 + a)*x^4), x)